Biology: The Interaction of Facts and Ideas

Science as Inquiry

JAME ONE

3

Science is like detective work, $4 \cdot 1-3$ The creative part of science, $4 \cdot 1-3$ The

Chapter Summary · Highlights, 13 · Questions, 13 · Bibliography, 13 ·

Some Biological Problems Related to the Variety of Living Things, 14:

The Variety of Living Things

21

attempts at classification, $23 \cdot 2-3$ Some organisms are difficult to classify, $25 \cdot 2-3$ Some organisms are difficult to classify, 25

Chapter Summary ' Highlights, 32 ' Questions, 32 ' Bibliography, 33 '

A Brief Classification of Organisms, 34

The Means of Evolution: Two Conflicting Views

45

3–1 Early ideas on evolution, 45 · 3–2 Lamarck explains evolution, 45 · 3–3 The voyage of the Beagle, 47 · 3–4 The clue from Malthus, 50 · 3–5 Clues from observation and experimentation, 51 · 3–6 Darwin's theory of evolution by natural selection, 52 · 3–7 Darwin announces his hypothesis, 54 · 3–8 Comparing Lamarck's and Darwin's hypotheses, 55 · 3–10 Experiments confirming natural selection, 59 · 3–11 Recent examples of natural selection, 60 ·

Chapter Summary · Highlights, 61 · Questions, 62 · Bibliography, 63 ·

The Origin of Living Things

65

olife, 65 · 4-2 The theory of spontaneous generation becomes widely accepted, 66 · 4-2 The theory of spontaneous generation becomes widely accepted, 66 · 4-3 Redi's famous experiment raises questions, 68 · 4-4 The microscope supplies new evidence, 70 · 4-5 The work of Needham and Spallanzani, 71 · 4-6 Pasteur performs conclusive experiments, 72 · 4-7 The theory of biogenesis raises new questions, 74 · 4-8 Life from outer space, 75 · 4-9 The autotroph hypothesis, 76 · 4-10 The heterotroph hypothesis, 76 ·

Chapter Summary · Highlights, 78 · Questions, 78 · Bibliography, 79 ·

The Evolution of the Cell

The Forerunners of Life

83

5-1 The ancient earth, 83 · 5-2 The ancient atmosphere, 85 · 5-3 A key to the chemistry of matter: the atomic theory, 87 · 5-4 Chemical composition of water, 88 · 5-5 The electrical nature of matter, 89 · 5-6 Combinations of atoms, 90 · 5-7 Molecules of simple gases, 92 · 5-8 The formation of organic compounds, 94 · 5-9 Molecules of amino acids, 95 · 5-10 Building with amino acids, 96 · 5-11 An experiment with amino acids, 97

 $^{\circ}$ 5–12 Clusters of organic molecules, 99 $^{\circ}$ 5–13 Interaction of coacervates and other organic materials, 100 $^{\circ}$ 5–14 The nature of life, 101 $^{\circ}$

Chapter Summary · Highlights, 103 · Questions, 104 · Bibliography, 105 ·

Chemical Energy for Life

107

Chapter Summary · Highlights, 124 · Questions, 124 · Projects, 125 · Bibliography, 125 ·

Master Molecules

127

7-1 Nucleic acids are found in all life, 127 · 7-2 The parts of a nucleic acid molecule, 128 · 7-3 Nucleic acids can transform bacteria into new types, 132 · 7-4 Viruses and nucleic acids, 135 · 7-5

The activities of a bacterial virus, 135 · 7-6 Nucleic acids control cell activities, 136 · The Contactions from Dies · 7-7 A requirement for success — duplication, 138 · 7-8 Volume and surface area during growth, 138 · 7-9 What causes a cell to divide?, 139 · 7-10 Further problems of duplication, 141 · A Molecular Model of DNA · 7-11 Clues to the DNA mystery, 142 · 7-12 A molecular model, 143 · 7-13 The DNA "ladder", 144 · 7-14 The usefulness of the model, 146 · 7-15 The test of the model, 148 ·

Chapter Summary · Highlights, 150 · Questions, 150 · Bibliography, 151 ·

The Biological Code

153

since Language and Like · 8-1 How does a cell pass on its traits?, 153 · 8-2 Code symbols, 154 · 8-3 The code of DNA, 155 · 8-4 Cracking the code, 156 · Building Process is believed · 8-5 The DNA and RNA of a cell are closely related, 159 · 8-6 Where are proteins made?, 110 · 8-7 How are proteins made?, 160 · 8-8 Proteins in the life of cells, 162 · Nac Code Manages · 8-9 The origin of new code messages, 163 · 8-10 A mutation affects the life of a cell, 163 · 8-11 The life of a bread mold, 165 · 8-12 Molds with damaged genes, 165 · 8-13 Genes and enzymes, 169 · Nac Code Managed genes, 165 · 8-13 Genes in new combinations, 172 · 8-16 The transfer of genes, 172 · 8-17 The advantages of sexual reproduction to microorganisms, 174 ·

Chapter Summary \cdot Highlights, 175 \cdot Questions, 175 \cdot Bibliography, 176 \cdot Biological Theme, 177 \cdot

THE Evolving Organism

Light as Energy for Life

181

have from the Changing Nearly 9-1 The changing environment, $181 \cdot 9-2$ A new form of life — the autotroph, $182 \cdot 9-3$ A problem of energy change, $183 \cdot 9-4$ The nature of light, $183 \cdot 164$ Nature of Problem of energy change, $183 \cdot 9-4$ The nature of light, $185 \cdot 9-6$ Factors that affect photosynthesis, $186 \cdot 9-7$ An energy-changing molecule, $189 \cdot 160 \cdot 16$

Chapter Summary \cdot Highlights, 204 \cdot Questions, 204 \cdot Bibliography, 206 \cdot Biological Theme, 207 \cdot

The Evolved Cell

209

Colls as Operational Units \cdot 10–1 Cells in general, 209 \cdot 10–2 Cells maintain their organization, 210 \cdot 10–3 The cytoplasm contains many structures, 210 \cdot Cell Division \cdot 10–4 The nature of cell division, 212 \cdot 10–5 Division of plant cells,

CONTENTS

213 · 10–6 Division of animal cells, 215 · 10–7 The control of cell division, 218 · 10–8 Can cells exist without a nucleus?, 218 · 10–9 Bacteria — more cells without a distinct nucleus, $219 \cdot 10$ –10 A variety of motion, 221 · 10–11 A variety of structure and function, 223 · 10–12 A biochemical curiosity, 225 · 10–13 Can cells exist without cytoplasm?, 225 ·

Chapter Summary · Highlights, 227 · Questions, 228 · Bibliography, 228 ·

The Cell Theory

231

231 · 11-2 Hooke views the cell, 232 · 11-3 Other biologists observe cells, 233 · 11-4 Knowledge of cells gradually accumulates, 235 · 11-5 The cell theory is proposed, 236

· 11-6 Better tools aid research, 238 · 11-7 Every cell from a cell, 238 · 11-8 The living substance of the cell, 238 · 11-9 New dyes reveal nuclear activity, 239 · 11-10 The functions of whole organisms depend upon cells, 240 · 11-11 The cell theory illustrates the interrelation of facts and ideas, 240 · 11-12 New instruments bring new advances, 241 · 11-13 The cell theory fits into a general scheme, 242 ·

Chapter Summary \cdot Highlights, 243 \cdot Questions, 243 \cdot Project, 244 \cdot Bibliography, 244 \cdot Biological Theme, 245 \cdot

The Multicellular Organism

247

12–1 Aggregates of cells, 247 · 12–2 Division of labor, 248 · 12–3 Life on the old frontiers, 250 · 12–4 Energetic efficiency, 252 · 12–5 Life on land, 252 · 12–6 Structure and function, 253 · 12–7 Reproduction and development, 255 · 12–8 Raw materials and wastes, 255 · 12–9 Distribution of materials, 256 · 12–10 Integration of activities, 256 · 12–11 Multipurpose systems, 257 ·

Chapter Summary · Highlights, 258 · Questions, 259 · Project, 259 · Bibliography, 259 ·

Multicellular Organisms: New Individuals

Reproduction

263

of two nuclei, 263 · 13–2 Gametes and chromosomes, 263 · 13–3 Meiosis — the production of monoploid cells, 265 · 13–4 Fertilization completes the cycle of sexual reproduction, 266 · 13–6 Sexual reproduction in a protist, 267 · 13–7 The reproductive cycle of the mosses, 268 · 13–8 The success of the flowering plants, 268 · 13–9 The reproductive cycle of the flowering plants, 268 · 13–10 The formation of seed and fruit, 269 · 13–11 Insect pollination — an example of highly specific adaptation, 270 · 13–12 The production of gametes in animals, 271 · 13–13 Patterns of external fertilization, 272 · 13–14 Patterns of internal fertilization, 273 · 13–15 Maintaining the developing organisms, 274 · 13–16 Protection and nourishment by the egg, 274 · 13–17 Protection and nourishment from the mother, 275 · 13–14 patterns of internal formalisms.

13–18 The male reproductive system, $279 \cdot 13$ –19 The female reproductive system, $279 \cdot 13$ –20 The female reproductive cycles, $280 \cdot 13$ –21 Structure and function of the placenta, $281 \cdot 13$ –22 The birth process, $282 \cdot 13$ –23 The secretion of milk, $284 \cdot 13$ –24 The role of hormones produced by the ovaries, $285 \cdot 13$ –25 The role of the pituitary hormones, $286 \cdot 13$ –26 Hormonal control by the placenta, $286 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system, $288 \cdot 13$ –27 Hormone controls of the male reproductive system.

Chapter Summary · Highlights, 289 · Questions, 289 · Bibliography, 290 ·

Development

293

velopment after asexual reproduction, 294 · 14–3 Development after sexual reproduction, 296 · 14–4 Early ideas about development, 297 · 14–5 The mystery of mammalian development, 298 · 14–6 The beginnings of development, 300 · 14–10 The primary cell layers in animals, 306 · 14–10 The beginnings of plant development, 308 · 14–11 The primary growth tissues in plants, 309 · 14–13 The experiments of Roux and Driesch, 311 · 14–14 Further light on the problem of differentiation, 313 · 14–15 Embryonic induction in the development of the eye, 315 · 14–16 The culture of tissues, 316 · 14–18 Regeneration in plants, 319 · 14–19 Variations in development, 321 · 14–20 Uncontrolled growth, 322 ·

Chapter Summary · Highlights, 323 · Questions, 324 · Bibliography, 324 ·

Multicellular Organisms: Genetic Continuity

Patterns of Heredity

329

ing, 330 · 15-3 The role of environment, 331 · 15-4 Nature and nurture: identical twins, 333 · 15-4 Performing the experiments, 337 · 15-5 Planning the experiments, 335 · 15-6 Performing the experiments, 337 · 15-7 How a trait is inherited, 339 · 15-18 What is probability?, 340 · 15-9 Two principles of probability, 341 · 15-10 Applying the principles of probability, 342 · 15-11 Using probability in genetics, 343 · 15-12 Interpreting Mendel's results, 344 · 15-13 Dominance, 346 · 15-14 Lack of dominance, 347 · 15-15 The test cross, 348 · 15-16 Multiple alleles, 348 · 15-17 Inheritance of two traits, 349 ·

Chapter Summary \cdot Highlights, 352 \cdot Questions, 353 \cdot Bibliography, 354 \cdot Biological Theme, 355 \cdot

Genes and Chromosomes

357

work, 357 · 16–2 Sutton's theory to explain Mendel's principles, 358 · 16–3 How could Sutton's theory be tested?, 360 · 16–4 The discovery of sex-linked inheritance, 361 · The Theorem and the sex determination, 362 · 16–6 An explanation of sex-linked inheritance, 364 · 16–7 Sex-linked inheritance in man, 366 · 16–8 Bridges' unexpected experi-

Chapter Summary · Highlights, 378 · Questions, 379 · Bibliography, 380 · Biological Theme, 381 ·

Origin of New Species

383

often do genes mutate?, 385 · 17-3 What causes genes to mutate?, 385 · 17-4 How radiation was shown to cause mutations, 386 · 17-5 Radiation can have other biological effects, 388 · 17-4 How frequently do certain genes occur in a population?, 390 · 17-7 The genes of a population are pooled for purposes of study, 391 · 17-8 The importance of population genetics, 17-9 The gene pool of a population changes very slowly, 392 · 17-10 How populations change, 393 · 17-11 How gene pools become isolated, 395 · 17-12 The origin of new varieties, 396 · 17-13 The domestication of plants and animals, 398 · 17-14 New genetic types and agriculture, 399 · 17-15 The origin of species, 401 · 17-16 Is evolution taking place today?, 404 ·

Chapter Summary · Highlights, 406 · Questions, 406 · Bibliography, 407 ·

The Human Species

409

**18-1 Studying the evolution of man, 409 · 18-2 The search for human fossils, 410 · 18-3 Measuring the age of human fossils, 411 · 18-4 Reconstructing the story of human evolution, 411 · 18-5 What kinds of human traits are under genetic control?, 415 · 18-6 Genes affecting man's appearance, 415 · 18-7 Genes affecting man's intelligence, 416 · 18-8 Genes affecting man's health, 417 · 18-10 Sampling a population, 419 · 18-11 Determining the frequency of a gene in a population, 420 · 18-12 Finding the frequency of a gene, 421 · 18-13 The Hardy-Weinberg principle, 422 · 18-14 Applying the Hardy-Weinberg principle, 424 · 18-15 The varieties of mankind, 425 · 18-16 Frequencies of blood group genes in human populations, 427 · 18-17 The "races" of man, 428 · 18-18 The future of the human species, 429 ·

Chapter Summary · Highlights, 432 · Questions, 432 · Bibliography, 433 ·

Multicellular Organisms: Energy Utilization

Photosynthetic Systems

437

The final product of photosynthetic evolution—the multicellular green plant, 438 · 19-3 Problems of the multicellular green plant, 438 · 19-4 The entry of carbon dioxide into multicellular plants, 439 · 19-5 The pathway of oxygen in multicellular

plants, 442 · 19-6 Photosynthesis occurs in the chloroplasts, 443 · 19-7 Chlorophyll absorbs light energy, 445 · 19-8 The entry and transport of materials in the multicellular plant, 446 · Paragra Which Edited has the Absorbation thotosynthesis in multicellular Plants · 19-9 Photosynthesis and the growth rate of the multicellular plant, 448 · 19-10 Carbon dioxide concentration, 448 · 19-11 The effect of light intensity on photosynthesis, 449 · 19-12 The effect of temperature on photosynthesis, 450 · 19-13 Mineral nutrition and its effect on photosynthesis, 450 · 19-14 The effect of water concentration on photosynthesis, 451 ·

Chapter Summary \cdot Highlights, 452 \cdot Questions, 452 \cdot Bibliography, 454 \cdot Biological Theme, 455 \cdot

Transport Systems

457

The transport in Marts · 20-1 The transport system is the product of evolution, 457 · 20-2 Two kinds of conducting tissue: xylem and phloem, 458 · 20-3 The mechanism of water transport in plants is a complicated engineering problem, 459 · 20-4 The cohesion-tension theory, 461 · 20-5 The phloem: conductor of organic materials, 461 · Transport Systems of complex organisms, 463 · 20-7 Two major types of transport systems, 463 · 20-8 The transport fluid is a complex substance, 465 · 20-9 Early investigations of blood flow in transport systems, 466 · Operation and degraction of the Transport Systems · 20-10 The heart and its control, 469 · 20-11 How the nerves affect changes in heart rate, 470 · 20-12 Blood pressure and blood flow, 471 · tomacosins and the telegraph three conditions and the telegraph three conditions and the telegraph three conditions of fluid exchange through the capillaries, 475 · 20-16 The lymphatic system, 477 ·

Chapter Summary · Highlights, 478 · Questions, 478 · Bibliography, 479 ·

Respiratory Systems

481

The Discovery of Bespiration • 21–1 Our knowledge of respiration, 481 • Form and Function of Bespiratory for flares • 21–2 The respiratory surfaces of plants and small animals, 483 • 21–3 The form and function of gills, 484 • 21–4 The form and function of tracheae, 484 • 21–5 The form and function of lungs, 485 • 21–6 The mechanics of lung breathing — the human as an example, 486 • adaptations for the Transport of Disgressiand Flares Disable • 21–7 The transport of oxygen in complex animals, 487 • 21–8 The important properties of the transport pigments, 488 • 21–9 The role of blood in carbon dioxide transport, 489 •

Chapter Summary : Highlights, 490 : Questions, 490 : Bibliography, 491 :

Digestive Systems

493

Fatterns of Digestion · 22–1 The significance of digestion, 493 · 22–2 Intracellular and extracellular digestion, 494 · 22–3 Digestion in plants, 495 · 22–4 Digestion in animals, 496 · The literature Digestive buston · 22–5 The human digestive tract, 497 · 22–6 Digestion starts in the mouth and esophagus, 498 · 22–7 Alexis St. Martin's stomach, 499 · 22–8 Digestion continues in the stomach, 501 · 22–9 The small intestine, the pancreas, and the liver, 502 · 22–10 Final breakdown and absorption in the small intestine, 504 · 22–11 The role of the large intestine, 504 ·

Chapter Summary · Highlights, 506 · Questions, 506 · Bibliography, 507 ·

Excretory Systems

509

Chapter Summary · Highlights, 519 · Questions, 520 · Project, 520 · Bibliography, 520 ·

Multicellular Organisms: Integrative Systems

Regulatory Systems

525

24–1 The discovery of a regulating mechanism in plants, 525 · 24–2 Other biologists' work with coleoptiles, 528 · 24–3 Auxins: plant hormones, 531 · 24–5 Many coordinators act to regulate one compound, 532 · 24–6 The thyroid and its general function, 534 · 24–7 The discovery of thyroid function, 535 · 24–8 The regulation of the thyroid gland, 537 · 24–9 Thyroid disorders: disturbance of homeostasis, 538

Chapter Summary · Highlights, 539 · Questions, 540 · Project, 540 · Bibliography, 540 ·

Nervous Systems

543

cord, and effector neurons, 551 · 25–9 Brain reflex activity, 554 · 25–8 The structures in different organisms, 543 · 25–2 The characteristic nerve cell, 544 · 25–3 The nerve impulse, 546 · 25–4 Transmission across synapses, 548 · 25–6 The brain, spinal cord, and effector neurons, 551 · 25–7 Regulation by nerves, 552 · 25–8 Reflex activity of the spinal cord, 552 · 25–9 Brain reflex activity, 554 ·

Chapter Summary : Highlights, 556 : Questions, 556 : Bibliography, 556 :

Skeletal and Muscular Systems

559

26–1 Skeletal systems provide support and protection, 559 · 26–2 Bone is the building material of skeletons, 560 · 26–3 Control of bone formation, 561 · 26–4 Muscle function, 562 · 26–5 Muscle tissues, 562 · 26–6 Muscle types in different organisms, 566 · 26–7 Organization of muscles, 566 · 26–8 Muscle action in different animals, 567 · 26–9 What stimulates striated muscle to contract?, 567 · 26–10 The mechanics of contraction, 568 · 26–11 Energy for muscle contraction, 569 · 26–12 Glycolysis, 570 · 26–13 ATP and creatine phosphate, 570 ·

Chapter Summary · Highlights, 571 · Questions, 572 · Project, 572 · Bibliography, 572 · Biological Theme, 573 ·

The Integrated Organism and Behavior

575

15-2 Linear Control of the Articles of 27-1 Behavior — the total activities of an organism, 575 · 27-2 A single-celled organism shows behavior, 576 · 27-3 Plants behave in a stereotyped manner, 577 · 27-4 Different types of behavior, 581 · 27-5 Innate behavior in the vertebrates, 581 · 27-6 Learning through the conditioned response, 585 · 27-7 Imprinting and experiments with mazes, 586 · 27-8 Reasoning is characteristic of man and some primates, 587 · 27-9 Behavior as an aspect of adaptation, 589 ·

Chapter Summary · Highlights, 591 · Questions, 592 · Bibliography, 593 ·

Higher Levels of Organization

Populations

597

Chapter Summary \cdot Highlights, 613 \cdot Questions, 613 \cdot Bibliography, 614 \cdot Biological Theme, 615 \cdot

Societies

617

based on sexual differences, 620 · 29–3 Group structure based on body adaptations of individuals, 621 · 29–4 Group structure based on behavioral adaptations of individuals, 622 · 29–5 Problems of a society, 622 · 29–6 Order in a society, 623 · 29–7 Leadership, 627 · 29–8 Territoriality, 629 · 29–9 Communication among bees, 631

Chapter Summary \cdot Highlights, 636 \cdot Questions, 636 \cdot Bibliography, 637 \cdot Biological Theme, 639 \cdot

Communities

641

30-1 A collection of species living together, 641 · 30-2 The dominant species of communities, 644 · 30-3 The layers of a community, 644 · 30-4 The boundaries of communities, 647 · 30-5 Size and number, 648 · 1. 1

Chapter Summary \cdot Highlights, 667 \cdot Questions, 667 \cdot Bibliography, 668 \cdot In conclusion, 669 \cdot

Appendix

673

Index

689

halacare ta ey il walafijia na la la