CONTENTS

PART I INTRODUCTION 1

CHAPTER 1 LIFE

- 1. THE ORIGIN OF LIFE 4
 - A. The Prebiotic World 4
 - B. Chemical Evolution 6
- 2. CELLULAR ARCHITECTURE 7
 - A. The Evolution of Cells 7
 - B. Prokaryotes and Eukaryotes 9
- 3. ORGANISMAL EVOLUTION 10
 - A. Taxonomy and Phylogeny 10
 - B. The Origins of Complexity 11
 - C. How Do Organisms Evolve? 12
- 4. THERMODYNAMICS 13
 - A. The First Law of Thermodynamics: Energy Is Conserved 13
 - B. The Second Law of Thermodynamics: Entropy Tends to Increase 14
 - C. Free Energy 15
 - D. Chemical Equilibria and the Standard State 16
 - E. Life Obeys the Laws of Thermodynamics 18

Box 1-1 Biochemistry in Focus: Biochemical Conventions 14

CHAPTER 2 WATER

22

- 1. PHYSICAL PROPERTIES OF WATER 23
 - A. Structure of Water 23
 - B. Water as a Solvent 26
 - C. The Hydrophobic Effect 27
 - D. Osmosis and Diffusion 29
- 2. CHEMICAL PROPERTIES OF WATER 31
 - A. Ionization of Water . 31
 - B. Acid-Base Chemistry 32
 - C. Buffers 34

Box 2-1 Biochemistry in Context: Diffusion Rates and the Sizes of Organisms 31

Box 2-2 Biochemistry in Health and Disease: The Blood Buffering System 37

PART II BIOMOLECULES 39

CHAPTER 3 NUCLEOTIDES AND NUCLEIC ACIDS

41

- 1. NUCLEOTIDE STRUCTURE AND FUNCTION 42
- 2. NUCLEIC ACID STRUCTURE 47
 - A. The Base Composition of DNA 48
 - B. The Double Helix 48
 - C. Single-Stranded Nucleic Acids 52
- 3. OVERVIEW OF NUCLEIC ACID FUNCTION 53
 - A. DNA Carries Genetic Information 53
 - B. Genes Direct Protein Synthesis 54
 - C. The RNA World 55

 4. NUCLEIC ACID SEQUENCING 56 A. Restriction Endonucleases 56 B. Electrophoresis and Restriction Mapping 58 C. The Chain-Terminator Method of Sequencing 59 D. Sequences, Mutation, and Evolution 63 	 Box 5-1 Biochemistry in Focus: Combinatorial Peptide Libraries 96 Box 5-2 Biochemistry in Context: Protein versus Nucleic Acid Sequencing 115 				
5. RECOMBINANT DNA TECHNOLOGY 64 A. Cloning Techniques 65 B. Genomic Libraries 67 C. DNA Amplification by the Polymerase Chain Reaction 69	CHAPTER 6 PROTEINS: THREE-DIMENSIONAL STRUCTURE 124				
D. Applications of Recombinant DNA Technology 69 Box 3-1 Biochemistry in Focus: Restriction Fragment Length Polymorphisms 59 Box 3-2 Biochemistry in Focus: Uses of PCR 71 Box 3-3 Biochemistry in Context: Ethical Aspects of Recombinant DNA Technology 73	 SECONDARY STRUCTURE 126 A. The Peptide Group 126 B. Regular Secondary Structure: The α Helix and the β Sheet 128 C. Fibrous Proteins 132 D. Nonrepetitive Protein Structure 137 TERTIARY STRUCTURE 140 A. Determining Protein Structure 140 B. Motifs (Supersecondary Structures) and Domains 143 				
CHAPTER 4 AMINO ACIDS 77	C. Protein Families 146				
 AMINO ACID STRUCTURE 78 A. General Properties 79 B. Peptide Bonds 79 C. Classification and Characteristics 79 D. Acid-Base Properties 84 E. A Few Words on Nomenclature 85 	 QUATERNARY STRUCTURE AND SYMMETRY 147 PROTEIN FOLDING AND STABILITY 148 A. Forces That Stabilize Protein Structure 149 B. Protein Denaturation and Renaturation 151 C. Protein Folding Pathways 153 D. Protein Dynamics 157 				
2. STEREOCHEMISTRY 86	Box 6-1 Biochemistry in Health and Disease: Collagen Diseases				
3. NONSTANDARD AMINO ACIDS 89 A. Amino Acid Derivatives in Proteins 89 B. D-Amino Acids 89 C. Biologically Active Amino Acids 90 Box 4-1 Biochemistry in Focus: The RS System 88 Box 4-2 Biochemistry in Context: Why Are Proteins Made of 20 L-Amino Acids? 89	135 Box 6-2 Biochemistry in Context: Protein Structure Prediction and Protein Design 138 Box 6-3 Biochemistry in Focus: Protein Structure Determination by NMR 142 Box 6-4 Biochemistry in Health and Disease: Diseases Related to Protein Folding 156				
20 L-Millio Acids: 09	-				
CHAPTER 5 PROTEINS: PRIMARY STRUCTURE 93	CHAPTER 7 PROTEIN FUNCTION 161				
 POLYPEPTIDE DIVERSITY 94 PROTEIN PURIFICATION 96 A. General Approach to Purifying Proteins 97 B. Protein Solubility 99 C. Chromatography 99 D. Electrophoresis of Proteins 104 E. Ultracentrifugation 106 	 MYOGLOBIN 162 A. Myoglobin Structure 162 B. Myoglobin Function 163 HEMOGLOBIN 165 A. Hemoglobin Structure 165 B. Oxygen Binding to Hemoglobin 167 C. Mechanism of Oxygen Binding Cooperativity 170 				
 PROTEIN SEQUENCING 107 A. Preliminary Steps 108 B. Polypeptide Cleavage 111 C. Edman Degradation 112 D. Reconstructing the Protein's Sequence 113 PROTEIN EVOLUTION 114 A. Protein Sequence Evolution 114 B. Gene Duplication and Protein Families 119 C. Protein Modules 120 	 D. Abnormal Hemoglobins 176 E. Allosteric Proteins 178 3. MYOSIN AND ACTIN 180 A. Structure of Striated Muscle 180 B. Structures of Thick and Thin Filaments 182 C. Mechanism of Muscle Contraction 184 D. Actin in Nonmuscle Cells 186 4. ANTIBODIES 186 A. Overview of the Immune System 187 B. Antibody Structure 187 C. Antigen-Antibody Binding 189 				

Box 7-1 Biod	chemistry	in	Context:	Other	Oxygen-Transport
Proteins	165				

- Box 7-2 Biochemistry in Health and Disease: High-Altitude Adaptation 174
- Box 7-3 Biochemistry in Health and Disease: Malaria and Hemoglobin S 178
- Box 7-4 Biochemistry in Focus: Monoclonal Antibodies 190 Box 7-5 Biochemistry in Health and Disease: Autoimmune Diseases 192

CHAPTER 8 CARBOHYDRATES

195

- 1. MONOSACCHARIDES 196
 - A. Classification of Monosaccharides 196
 - B. Configuration and Conformation 198
 - C. Sugar Derivatives 201
- 2. POLYSACCHARIDES 203
 - A. Disaccharides 203
 - B. Structural Polysaccharides: Cellulose and Chitin 204
 - C. Storage Polysaccharides: Starch and Glycogen 206
 - D. Glycosaminoglycans 207
- 3. GLYCOPROTEINS 209
 - A. Proteoglycans 209
 - B. Bacterial Cell Walls 210
 - C. Glycosylated Proteins 212
 - D. Functions of Oligosaccharides 214

Box 8-1 Biochemistry in Health and Disease: Lactose Intolerance 204

Box 8-2 Biochemistry in Health and Disease: Penicillin 212
Box 8-3 Biochemistry in Focus: Selectins and Cell-Cell
Interactions 216

CHAPTER 9 LIPIDS

219

- 1. LIPID CLASSIFICATION 220
 - A. Fatty Acids 220
 - B. Triacylglycerols 222
 - C. Glycerophospholipids 223
 - D. Sphingolipids 226
 - E. Steroids 228
 - F. Other Lipids 231
- 2. LIPID BILAYERS 233
 - A. Why Bilayers Form 233
 - B. Lipid Mobility 235
- Box 9-1 Biochemistry in Health and Disease: Lung Surfactant
- Box 9-2 Biochemistry in Context: The Biochemistry of Spices

CHAPTER 10 BIOLOGICAL MEMBRANES

239

CHAPTER 11 ENZYMATIC CATALYSIS

281

- 1. MEMBRANE PROTEINS 240
 - A. Integral Membrane Proteins 240

- B. Lipid-Linked Proteins 244
- C. Peripheral Membrane Proteins 246
- 2. MEMBRANE STRUCTURE AND ASSEMBLY 246
 - A. The Fluid Mosaic Model 248
 - B. The Erythrocyte Membrane 250
 - C. Lipid Asymmetry 253
 - D. The Secretory Pathway 255
- 3. LIPOPROTEINS AND RECEPTOR-MEDIATED ENDOCYTOSIS 260
 - A. Lipoprotein Structure 260
 - B. Receptor-Mediated Endocytosis of LDL 262
- 4. TRANSPORT ACROSS MEMBRANES 264
 - A. Thermodynamics of Transport 265
 - B. Mechanisms of Mediated Transport 266
 - C. ATP-Driven Active Transport 271
 - D. Ion Gradient-Driven Active Transport 274

Box 10-1 Biochemistry in Health and Disease: Cholesterol and Atherosclerosis 263

Box 10-2 Biochemistry in Focus: Differentiating Mediated and Nonmediated Transport 270

Box 10-3 Biochemistry in Focus: The Action of Cardiac Glycosides 273

Box 10-4 Biochemistry in Health and Disease: HCl and Peptic Ulcers 274

PART III ENZYMES 279

- 1. GENERAL PROPERTIES OF ENZYMES 282
 - A. Enzyme Nomenclature 283

- B. Substrate Specificity 284
- C. Cofactors and Coenzymes 286
- 2. ACTIVATION ENERGY AND THE REACTION COORDINATE 288
- 3. CATALYTIC MECHANISMS 290
 - A. Acid-Base Catalysis 291
 - B. Covalent Catalysis 293
 - C. Metal Ion Catalysis 295
 - D. Electrostatic Catalysis 295
 - E. Catalysis through Proximity and Orientation Effects 296
 - F. Catalysis by Preferential Transition State Binding 297
- 4. LYSOZYME 300
 - A. Enzyme Structure 300
 - B. Catalytic Mechanism 304
- 5. SERINE PROTEASES 307
 - A. The Active Site 307
 - B. X-Ray Structures 309
 - C. Catalytic Mechanism 312
 - D. Zymogens 316
- Box 11-1 Biochemistry in Focus: Effects of pH 292
- Box 11-2 Biochemistry in Focus: Catalytic Antibodies 299
- Box 11-3 Biochemistry in Context: Observing Enzyme Action by X-Ray Crystallography 302
- Box 11-4 Biochemistry in Health and Disease: Nerve Poisons 308
- Box 11-5 Biochemistry in Health and Disease: The Blood Coagulation Cascade 318

CHAPTER 12 ENZYME KINETICS, INHIBITION, AND REGULATION

322

- 1. REACTION KINETICS 323
 - A. Chemical Kinetics 323
 - B. Enzyme Kinetics 326
 - C. Analysis of Kinetic Data 331
 - D. Bisubstrate Reactions 333
- 2. ENZYME INHIBITION 335
 - A. Competitive Inhibition 335
 - B. Uncompetitive Inhibition 340
 - C. Mixed Inhibition 341
- 3. REGULATION OF ENZYME ACTIVITY 342

Box 12-1 Biochemistry in Focus: Isotopic Labeling 325
Box 12-2 Biochemistry in Focus: Kinetics and Transition State
Theory 330

Box 12-3 Biochemistry in Health and Disease: HIV Enzyme Inhibitors 336

PART IV METABOLISM 351

CHAPTER 13 INTRODUCTION TO METABOLISM 353

- 1. OVERVIEW OF METABOLISM 354
 - A. Trophic Strategies 354
 - B. Metabolic Pathways 355
 - C. Thermodynamic Considerations 357
 - D. Control of Metabolic Flux 359
- 2. "HIGH-ENERGY" COMPOUNDS 361
 - A. ATP and Phosphoryl Group Transfer 361
 - B. Coupled Reactions 363
 - C. Other Phosphorylated Compounds 366
 - D. Thioesters 368
- 3. OXIDATION-REDUCTION REACTIONS 369
 - A. NAD+ and FAD 370
 - B. The Nernst Equation 370
 - C. Measurements of Reduction Potential 372
- 4. EXPERIMENTAL APPROACHES TO THE STUDY OF METABOLISM 374
 - A. Tracing Metabolic Fates 375
 - B. Perturbing the System 379

Box 13-1 Biochemistry in Focus: Organizing Metabolic Reactions 356

Box 13-2 Biochemistry in Focus: ATP and ΔG 363

Box 13-3 Biochemistry in Context: Practical Uses for Bacterial Metabolism 376

CHAPTER	14	GLUCOSE	CATAROLISM

- 1. OVERVIEW OF GLYCOLYSIS 383
- 2. THE REACTIONS OF GLYCOLYSIS 385
 - A. Hexokinase: First ATP Utilization 385
 - B. Phosphoglucose Isomerase 387
 - C. Phosphofructokinase: Second ATP Utilization 388
 - D. Aldolase 388
 - E. Triose Phosphate Isomerase 390
 - F. Glyceraldehyde-3-Phosphate Dehydrogenase: First "High-Energy" Intermediate Formation 393
 - G. Phosphoglycerate Kinase: First ATP Generation 395
 - H. Phosphoglycerate Mutase 396
 - I. Enolase: Second "High-Energy" Intermediate Formation
 - J. Pyruvate Kinase: Second ATP Generation 399
- 3. FERMENTATION: THE ANAEROBIC FATE OF PYRUVATE 401
 - A. Homolactic Fermentation 402
 - B. Alcoholic Fermentation 403
 - C. Energetics of Fermentation 406
- 4. CONTROL OF GLYCOLYSIS 406
 - A. Phosphofructokinase: The Major Flux-Controlling Enzyme of Glycolysis in Muscle 408
 - B. Substrate Cycling 410
- 5. METABOLISM OF HEXOSES OTHER THAN GLUCOSE 412
 - A. Fructose 412
 - B. Galactose 414
 - C. Mannose 416
- 6. THE PENTOSE PHOSPHATE PATHWAY 417
 - A. Stage 1: Oxidative Reactions of NADPH Production 417
 - B. Stage 2: Isomerization and Epimerization of Ribulose-5--Phosphate 419
 - C. Stage 3: Carbon-Carbon Bond Cleavage and Formation Reactions 421
 - D. Control of the Pentose Phosphate Pathway 422
- Box 14-1 Biochemistry in Focus: Synthesis of 2,3-Bisphosphoglycerate in Erythrocytes and Its Effect on the Oxygen Carrying Capacity of the Blood 398

Box 14-2 Biochemistry in Focus: Glycolytic ATP Production in Muscle 407

Box 14-3 Biochemistry in Health and Disease: Glucose-6-Phosphate Dehydrogenase Deficiency 423

CHAPTER 15 GLYCOGEN METABOLISM AND **GLUCONEOGENESIS**

- 1. GLYCOGEN BREAKDOWN
 - A. Glycogen Phosphorylase 429
 - B. Glycogen Debranching Enzyme 432
 - C. Phosphoglucomutase 433
- 2. GLYCOGEN SYNTHESIS 434
 - A. UDP-Glucose Pyrophosphorylase 435
 - B. Glycogen Synthase 436
 - C. Glycogen Branching Enzyme 437

- 3. CONTROL OF GLYCOGEN METABOLISM 438
 - A. Direct Allosteric Control of Glycogen Phosphorylase and Glycogen Synthase 438
 - B. Covalent Modification of Glycogen Phosphorylase and Glycogen Synthase 440
 - C. Hormonal Effects on Glycogen Metabolism 450
- 4. GLUCONEOGENESIS 452

382

426

- A. Pyruvate to Phosphoenolpyruvate 453
- B. Hydrolytic Reactions 456
- C. Regulation of Gluconeogenesis 458
- 5. OTHER CARBOHYDRATE BIOSYNTHETIC PATHWAYS

Box 15-1 Biochemistry in Context: Optimizing Glycogen Structure 439

Box 15-2 Biochemistry in Health and Disease: Glycogen Storage Diseases 448

Box 15-3 Biochemistry in Focus: Lactose Synthesis 460

CHAPTER 16 CITRIC ACID CYCLE

- 1. OVERVIEW OF THE CITRIC ACID CYCLE 467
- 2. SYNTHESIS OF ACETYL-COENZYME A 470
 - A. The Pyruvate Dehydrogenase Multienzyme Complex 470
 - B. The Reactions of the Pyruvate Dehydrogenase Complex
- 3. ENZYMES OF THE CITRIC ACID CYCLE 475
 - A. Citrate Synthase 475
 - B. Aconitase 476
 - C. NAD⁺-Dependent Isocitrate Dehydrogenase 477
 - D. α-Ketoglutarate Dehydrogenase
 - E. Succinyl-CoA Synthetase 479
 - F. Succinate Dehydrogenase 480
 - G. Fumarase 482
 - H. Malate Dehydrogenase 482
- 4. REGULATION OF THE CITRIC ACID CYCLE 482
 - A. Regulation of Pyruvate Dehydrogenase 484
 - B. The Rate-Controlling Enzymes of the Citric Acid Cycle
- 5. REACTIONS RELATED TO THE CITRIC ACID CYCLE 487
 - A. Pathways That Use Citric Acid Cycle Intermediates 487
 - B. Reactions That Replenish Citric Acid Cycle Intermediates
 - C. The Glyoxylate Pathway 488
- Box 16-1 Biochemistry in Health and Disease: Arsenic Poisoning 475
- Box 16-2 Biochemistry in Focus: The Stereospecificity of Citric Acid Cycle Reactions 481
- Box 16-3 Biochemistry in Context: The Metabolon Hypothesis 483

CHAPTER 17 ELECTRON TRANSPORT AND		CHAPTER 19	LIPID METABOLISM
OXIDATIVE PHOSPHORYLATION	492	1 LIDID DICES	TION ARSODDTION AND

- \$1. THE MITOCHONDRION 493
 - A. Mitochondrial Anatomy 494
 - B. Mitochondrial Transport Systems 494
- 2. ELECTRON TRANSPORT 497
 - A. Thermodynamics of Electron Transport 497
 - B. The Sequence of Electron Transport 498
 - C. Complex I (NADH-Coenzyme Q Oxidoreductase) 500
 - D. Complex II (Succinate-Coenzyme Q Oxidoreductase)
 - E. Complex III (Coenzyme Q-Cytochrome c Oxidoreductase)
 - F. Complex IV (Cytochrome *c* Oxidase)
- 3. OXIDATIVE PHOSPHORYLATION 511
 - A. The Chemiosmotic Theory 511
 - B. ATP Synthase 514
 - C. The P/O Ratio 517
 - D. Uncoupling Oxidative Phosphorylation 518
- 4. CONTROL OF ATP PRODUCTION 519
 - A. Control of Oxidative Phosphorylation 519
 - B. Coordinated Control of Oxidative Metabolism 521
- 5. PHYSIOLOGICAL IMPLICATIONS OF AEROBIC METABOLISM 522
 - A. Cytochrome P450 522
 - B. Reactive Oxygen Species 524
 - C. Antioxidant Mechanisms 524
- Box 17-1 Biochemistry in Focus: Cytochromes Are Electron-Transport Heme Proteins 504
- Box 17-2 Biochemistry in Context: Bacterial Electron Transport and Oxidative Phosphorylation 513
- Box 17-3 Biochemistry in Focus: Uncoupling in Brown Adipose Tissue Generates Heat 520
- Box 17-4 Biochemistry in Health and Disease: Oxygen Deprivation in Heart Attack and Stroke 523

CHAPTER 18 PHOTOSYNTHESIS

529

- ネ1. CHLOROPLASTS 530
 - A. Chloroplast Anatomy 531
 - B. Light-Absorbing Pigments 531
- 2. THE LIGHT REACTIONS 535
 - A. The Interaction of Light and Matter 535
 - B. Electron Transport in Photosynthetic Bacteria 537
 - C. Two-Center Electron Transport 540
 - D. Photophosphorylation 547
- 3. DARK REACTIONS 549
 - A. The Calvin Cycle 549
 - B. Control of the Calvin Cycle 554
 - C. Photorespiration 556
- Box 18-1 Biochemistry in Context: Evolution of Photosynthetic Systems 543
- Box 18-2 Biochemistry in Focus: Segregation of PSI and PSII 548

- 1. LIPID DIGESTION, ABSORPTION, AND TRANSPORT 563
 - A. Digestion and Absorption 563
 - B. Lipid Transport 566
- 2. FATTY ACID OXIDATION 568
 - A. Fatty Acid Activation 568
 - B. Transport across the Mitochondrial Membrane 569
 - C. B Oxidation 570
 - D. Oxidation of Unsaturated Fatty Acids 573
 - E. Oxidation of Odd-Chain Fatty Acids 575
 - F. Peroxisomal β Oxidation 579
- 3. KETONE BODIES 580
- 4. FATTY ACID BIOSYNTHESIS 582
 - A. Transport of Mitochondrial Acetyl-CoA into the Cytosol
 - B. Acetyl-CoA Carboxylase 584
 - C. Fatty Acid Synthase 585
 - D. Elongases and Desaturases 587
 - E. Synthesis of Triacylglycerols 588
- 5. REGULATION OF FATTY ACID METABOLISM 590
- 6. MEMBRANE LIPID SYNTHESIS 593
 - A. Glycerophospholipids 593
 - B. Sphingolipids 597
- 7. CHOLESTEROL METABOLISM 599
 - A. Cholesterol Biosynthesis 599
 - B. Cholesterol Transport 604
 - C. Control of Cholesterol Metabolism 604

Box 19-1 Biochemistry in Health and Disease: Vitamin B₁₂ Deficiency 576

Box 19-2 Biochemistry in Context: Plant Oils 592

Box 19-3 Biochemistry in Health and Disease: Sphingolipid Degradation and Lipid Storage Diseases 600

CHAPTER 20 AMINO ACID METABOLISM

- 1. INTRACELLULAR PROTEIN DEGRADATION 612
 - A. Lysosomal Degradation 612
 - B. Ubiquitin 613
 - C. The Proteasome 614
- 2. AMINO ACID DEAMINATION 615
 - A. Transamination 615
 - B. Oxidative Deamination 619
- 3. THE UREA CYCLE 620
 - A. Reactions of the Urea Cycle 620
 - B. Regulation of the Urea Cycle 623
- 4. BREAKDOWN OF AMINO ACIDS 624
 - A. Alanine, Cysteine, Glycine, Serine, and Threonine Are Degraded to Pyruvate 625
 - B. Asparagine and Aspartate Are Degraded to Oxaloacetate
 - C. Arginine, Glutamate, Glutamine, Histidine, and Proline Are Degraded to α-Ketoglutarate 628
 - D. Isoleucine, Methionine, and Valine Are Degraded to Succinyl-CoA 629

- E. Leucine and Lysine Are Degraded to Acetoacetate and/or Acetyl-CoA 634
- F. Tryptophan Is Degraded to Alanine and Acetoacetate 636
- G. Phenylalanine and Tyrosine Are Degraded to Fumarate and Acetoacetate 637
- 5. AMINO ACID BIOSYNTHESIS 640
 - A. Biosynthesis of the Nonessential Amino Acids 640
 - B. Biosynthesis of the Essential Amino Acids 645
- 6. OTHER PRODUCTS OF AMINO ACID METABOLISM 650
 - A. Heme Biosynthesis and Degradation 651
 - B. Biosynthesis of Physiologically Active Amines 656
 - C. Nitric Oxide 657
- 7. NITROGEN FIXATION 658
- Box 20-1 Biochemistry in Health and Disease: Phenylketonuria and Alcaptonuria Result from Defects in Phenylalanine Degradation 638
- Box 20-2 Biochemistry in Health and Disease: The Porphyrias 654

CHAPTER 21 MAMMALIAN FUEL METABOLISM: INTEGRATION AND REGULATION

- 1. ORGAN SPECIALIZATION 664
 - A. The Brain 666
 - B. Muscle 667
 - C. Adipose Tissue 668
 - D. Liver 668
- 2. INTERORGAN METABOLIC PATHWAYS 670
 - A. The Cori Cycle 670
 - B. The Glucose-Alanine Cycle 670
 - C. Glucose Transporters 671
- MECHANISMS OF HORMONE ACTION: SIGNAL TRANSDUCTION 672
 - A. Hormonal Regulation of Fuel Metabolism 673
 - B. The Adenylate Cyclase Signaling System 674
 - C. Receptor Tyrosine Kinases 677
 - D. The Phosphoinositide Pathway 683
- 4. DISTURBANCES IN FUEL METABOLISM 685
 - A. Starvation 685
 - B. Diabetes Mellitus 687
 - C. Obesity 689
- Box 21-1 Biochemistry in Health and Disease: Drugs and Toxins That Affect Cell Signaling 678
- Box 21-2 Biochemistry in Health and Disease: Oncogenes and Cancer 682
- Box 21-3 Biochemistry in Focus: How Do β Cells Respond to Blood Glucose Levels? 689

CHAPTER 22 NUCLEOTIDE METABOLISM

693

663

- 1. SYNTHESIS OF PURINE RIBONUCLEOTIDES 693
 - A. Synthesis of Inosine Monophosphate 695
 - B. Synthesis of Adenine and Guanine Ribonucleotides 698
 - C. Regulation of Purine Nucleotide Biosynthesis 699

- D. Salvage of Purines 700
- 2. SYNTHESIS OF PYRIMIDINE RIBONUCLEOTIDES 700
 - A. Synthesis of UMP 701
 - B. Synthesis of UTP and CTP 702
 - C. Regulation of Pyrimidine Nucleotide Biosynthesis 703
- 3. FORMATION OF DEOXYRIBONUCLEOTIDES 704
 - A. Production of Deoxyribose Residues 704
 - B. Origin of Thymine 709
- 4. NUCLEOTIDE DEGRADATION 712
 - A. Catabolism of Purines 714
 - B. Fate of Uric Acid 717
 - C. Catabolism of Pyrimidines 718

Box 22-1 Biochemistry in Health and Disease: Inhibition of Thymidylate Synthesis in Cancer Therapy 713

Box 22-2 Biochemistry in Health and Disease: Severe Combined Immunodeficiency Disease 715

PART V GENE EXPRESSION AND REPLICATION 723

CHAPTER 23 NUCLEIC ACID STRUCTURE

- 1. THE DNA HELIX 726
 - A. The Geometry of DNA 726
 - B. Flexibility of DNA 730
 - C. Supercoiled DNA 732
- 2. FORCES STABILIZING NUCLEIC ACID STRUCTURES 739
 - A. Denaturation and Renaturation 739
 - B. Base Pairing 740
 - C. Base Stacking and Hydrophobic Interactions 741
 - D. Ionic Interactions 742
 - E. RNA Structure 742
- 3. FRACTIONATION OF NUCLEIC ACIDS 747
 - A. Chromatography 748

Uracil? 800

CHAPTER 27 REGULATION OF GENE EXPRESSION

886

- 1. GENOME ORGANIZATION 887
 - A. Gene Number 888
 - B. Gene Clusters 890
 - C. Nontranscribed DNA 891
- 2. REGULATION OF PROKARYOTIC GENE EXPRESSION 894
 - A. The lac Repressor 894
 - B. Catabolite Repression: An Example of Gene Activation 897
 - C. Attenuation 898
 - D. Bacteriophage λ 901
- 3. REGULATION OF EUKARYOTIC GENE EXPRESSION 910
 - A. Chromatin Structure and Gene Expression 911

- B. Control of Transcription in Eukaryotes 912
- C. Somatic Recombination and Antibody Diversity 916
- D. Posttranscriptional and Translational Control 919
- E. The Molecular Basis of Development 922
- Box 27-1 Biochemistry in Health and Disease: Trinucleotide Repeat Diseases 892
- Box 27-2 Biochemistry in Context: Inferring Genealogy from DNA Sequences 893

GLOSSARY G-1

SOLUTIONS TO PROBLEMS SP-1

INDEX I-1